Abstract

The purpose of this exploratory study was to gather information from preservice teachers about what they observed in inservice teachers’ classroom, specifically looking at research-based instructional strategies. Preservice teachers practiced the strategies as participants with the professor in their instructional strategies course, designed and developed lessons for each strategy focused on their own content area, and delivered the lessons to students in
The making of an effective teacher involves multiple influences: the theory and research learned in the university classroom, the research-based teaching strategies modeled by the university professor and the strategies observed and delivered in public school classrooms. If it is true that we tend to teach the way we are taught, that we model the behaviors of our past teachers when we teach, what is the influence of the university professor and the observed public school teacher on the intended teaching practices of the preservice teacher?

As a part of their training, preservice teachers study and experience a variety of instructional strategies. The topics are addressed in students’ texts, discussed in their base groups, modeled by the professor, and practiced by the preservice teachers in the class as learners. University students demonstrate their knowledge of the strategies by developing lesson plans and/or summaries of their learning and completing tests on the topics. These experiences provide a level of understanding that enables them to recognize the demonstration of the techniques in public school classrooms.

The preservice teachers are assigned to two secondary inservice teachers for classroom experiences prior to their residency (student teaching). Over an entire semester, the preservice teachers spend a minimum of 60 hours in their field experience assignments.

Fifty-two secondary field-experience students observing in 104 secondary classrooms were surveyed at the end of the semester to determine which of the research-based strategies they had observed and which research-based strategies they intended to use in their own classrooms in the future. For this study the 10 strategies emphasized were: Questioning Techniques, Concept Attainment, Classification, Thematic Instruction, Cooperative Learning Skill Lesson/Direct Instruction, Performance Assessment, Portfolios, Rubrics, and Learning Styles/Multiple Intelligences.

The questions to be answered as a result of this study were:

1. To what extent do inservice teachers implement research-based instructional strategies?
2. Which strategies do inservice teachers use most often?
3. To what extent do preservice teachers plan to implement research-based instructional strategies into their own classrooms?
4. Which strategies do preservice teachers plan to use most often?

Definitions

- **Inservice teachers** are those who are currently under contract with a public school system and have full-time teaching responsibilities. It was recommended that the inservice teachers have a minimum of three years experience in the secondary classroom, but not all fit that criteria.
- **Preservice teachers** have university senior status and are within one semester of completing all program requirements that will enable them earn teacher certification after passing the state required exams.
- **Instructional strategy** is a specific method used that is a planned or deliberate effort to teach something to someone. Example: Concept Attainment can be taught as a specific sequence of steps to promote understanding of a concept.
Literature Review

In reviewing the literature on preservice teacher observations of inservice teachers’ implementation of research-based strategies, very little was found. A summary of the most pertinent conclusions by researchers about inservice teachers’ use of research-based strategies is summarized here.

Bellon, Bellon, and Blank (1992) in *Teaching from a Research Knowledge Base* state:

> Many experienced teachers are not conversant with the recent research on teaching. They may have had workshops on specific areas of the research such as questioning techniques, but they have not had the opportunity to be involved with in-depth explorations and applications. Most teachers, however, are interested and would like to make selected applications of research findings. (p. 3)

Staff development efforts in districts introduce research-based strategies but often do not follow up with the support activities that will enable teachers to move beyond knowledge to levels of application.

> Acquiring a research knowledge base is a developmental process. In order for teachers to respond to current and future expectations effectively, they will need to have a range of teaching strategies they can draw on to provide the best possible learning opportunities for their students. It is essential for these teaching strategies to be well grounded in research. (p. 7)

School districts across the nation recognize the importance of providing professional development opportunities for educators, but all too often do not go beyond the level of introducing a research-based topic. For true implementation, a program needs to be structured to include introduction to the strategy, practice without the fear of being judged, follow-up sessions to discuss with peers what works, what doesn’t, and find out how others are implementing the strategy. Additional training opportunities need to be provided to move from one level of implementation to another. This occurs over an extended period of time. For example, when introducing cooperative learning, it takes at least two years of using the strategy on a regular basis of at least once a week to be proficient. The results of this investment of on-going training can be dramatic in terms of increased achievement of students.

Good and Brophy (1997), in *Looking in Classrooms*, point out that "Experienced teachers can also learn from beginning teachers. There is no single formula specifying good teaching because no one set of teaching behaviors is clearly related to student achievement in all situations" (p. 447). Preservice teachers surveyed reported that often times the inservice teachers were hesitant to let them try strategies that were not used by the inservice teachers themselves. With varying levels of success by preservice teachers the inservice teachers gave feedback about classroom management issues, and often were surprised at the level of effectiveness the preservice teacher demonstrated through the use of the strategy. Preservice teachers reported that inservice teachers indicated they wanted to try parts of the research-based strategies they identified as most effective.

Joyce and Weil (1996) stated in a discussion of a research project on school improvement in the 5th edition of *Models of Teaching* that:

> As the teachers learned to use several models of teaching designed to increase cooperative activity, teach concepts, and teach students to work inductively and to memorize information, the learning rates of the students began to improve dramatically. . . . We believe that the use of the models of teaching that the teachers added to their repertoire increased the learning rates of the students, reduced off-task behavior, and improved the tone of the school’s social climate. . . . It is unlikely that any one model could have achieved effects of this magnitude, but the combination of models helped
students learn a variety of learning strategies that together enabled them to educate themselves more strongly. (p. 47)

A major role in teaching is to create powerful learners. (p. 7)

Bloom (1984) speculated in an article in *Educational Researcher* that

... as we already had a fairly good idea of what instructional strategies were effective, implementing any two or more should raise student achievement by two standard deviations: the equivalent of raising an average child’s attainment to the 98th percentile.

Pratt (1994) stated:

Bloom was, perhaps, a little optimistic. However, it is worth pointing out that it is [research-based] strategies... that are used by commercial tutoring enterprises. The Sylvan Learning Center® (undated) has taught over one million students by such means and guarantees that students will gain one-grade-level-equivalent in reading or mathematics in 36 hours of instruction.

He goes on to predict

Introduce any two of the [research-based] strategies... and implement them systematically for one year. The increase in the attainment of your students will be greater than the average difference (about one-third of a standard deviation) that has historically been observed between the achievement of lower-class and middle-class students. (p. 217)

Kauchak and Eggen (1998), in *Teaching and Learning: Research-Based Methods* stated

Research on teacher planning highlights an interesting paradox: time and effort in teacher training programs are spent on processes that experienced teachers apparently do not use. The accumulating evidence suggests that experienced teachers do not prepare written objectives and detailed lesson plans (Morine-Dershimer & Vallance, 1976; Peterson et al., 1978; Zahorik, 1975), and our experience in the schools supports these findings. (p. 91)

They further emphasize:

The ability to put your planning decisions on paper and describe them to others is fast becoming a prerequisite to entrance to the teaching profession. In short, you will be asked to plan and execute lessons and justify your decisions to college professors and supervisors, directing teachers during internship, and administrators supervising you during your first years on the job. The increased emphasis on accountability in education requires that beginning teachers be able to demonstrate their ability to make professional decisions. Effective lesson planning is an important part of professional decision making. (p. 93)

Many of our university students report that teachers use a 2 x 2 inch square in a lesson plan book to do their planning for a day. Some not even that. Experience does count, but students coming through the university need to learn the "template" of each research-based strategy and be able to design, develop, and deliver these types of lessons to students. With inexperience all the details are important to think through and write down. Task analysis is essential. Modifications to the format depends on the expectations and standards of the administrators where they are hired.
The "Cadillac of Lesson Plans" university students are required to submit is essential to demonstrate their understanding of each "template." Each student is observed teaching public school students by the professor, mentor teachers, and at least one of her/his peers. Written feedback is provided by each observer. Accountability is essential. This intense preparation ensures that they can recognize strategies, practice these in the delivery of information in the classroom observed by mentor teachers and establish a professional relationship based on dialogue with their mentors.

In summary:

- Many experienced teachers have not had on-going professional development opportunities provided within their districts and are not knowledgeable of recent research on teaching.
- Experienced teachers can and do learn from preservice teachers.
- Use of research-based strategies increases student learning and reduces off-task behavior.
- Effective lesson planning is essential for accountability.

Population

The majority of urban schools that preservice teachers were assigned to had student populations of approximately one-third Hispanic, one-third African American, and one-third Caucasian. An Asian population of 2%-4% was also represented in each of these communities. Student populations at the junior highs ranged from 800-1,300 and at the high schools from 1,500-3,500. All preservice teachers had one school district in common and one that was in any of 10 districts within the immediate area.

Procedures

The 52 preservice teachers had majors or minors in the following areas: art, French, Spanish, English, physical education, history, economics, social studies composite, government, band, choir, physical science, science composite, biology, physics, chemistry, or math. They were matched with inservice teachers who were currently teaching these subjects at the secondary level.

Each preservice teacher was assigned to work with two experienced teachers for the entire semester, a minimum of two hours per week. The minimum amount of time required was 60 hours per student.

A survey (Appendix B) was designed to be piloted at the end of the semester. The preservice teachers were first asked to determine their level of awareness about the strategy and then to indicate if they had observed either of their inservice teachers using this strategy in her/his classroom. The two teaching assignments were asked about separately. The survey focused on the following 10 strategies: (For a detailed descriptor of each of these see Appendix A.)

1. Questioning Techniques
2. Concept Attainment
3. Classification
4. Thematic/Integrated
5. Skill Lesson/Direct Instruction
6. Cooperative Learning
7. Performance Assessment
Findings

Fifty-two preservice teachers’ responses were compiled reflecting 104 classrooms observed. Table 1 presents the findings in a chart designed to report percentage of responses based on what preservice teachers indicated they observed in inservice teachers’ classrooms.

The percentages under "Your Knowledge of the Strategy" indicates first the preservice teacher’s own level of awareness by self-selecting a rating of 1, 2, 3, or 4 for each of the 10 strategies based on the following statements:

Your Knowledge

1 --- Indicates that you already know of the topic and are or have used it.

2 --- Indicates that you already know of the topic and want to use it.

3 --- Indicates that you know of the topic and do not want to use it.

4 --- Indicates that you are not knowledgeable of the topic.

Preservice teachers were then asked if they observed each strategy in their initial field experience assignment or in their second field experience assignment. The last item for each strategy was for the preservice teacher to indicate if they themselves intended to use the strategy in their own classrooms once they were under contract with a school district. Table 1 includes a summary of the responses.

Originally the directions were for preservice teachers to estimate the percent of time each strategy was observed, but this yielded results that were difficult if not impossible to quantify. Often columns added up to more than or less than 100%. In order to review the information collected items were converted to = if they indicated an estimate and no if no

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of Survey Responses: Preservice Teachers' Observations of Inservice Teachers' Use</td>
</tr>
<tr>
<td>TOPIC</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Questioning Techniques</td>
</tr>
<tr>
<td>Concept Attainment</td>
</tr>
<tr>
<td>Classification</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Thematic or Integrated Instruction</td>
</tr>
<tr>
<td>Cooperative Learning</td>
</tr>
<tr>
<td>Skill Lesson/ Direct Instruction</td>
</tr>
<tr>
<td>Performance Assessment</td>
</tr>
<tr>
<td>Portfolios</td>
</tr>
<tr>
<td>Rubrics</td>
</tr>
<tr>
<td>Learning Styles/ Multiple Intelligences</td>
</tr>
</tbody>
</table>

* YOUR KNOWLEDGE

1 --- Indicates that you already know of the topic and are or have used it.

2 --- Indicates that you already know of the topic and want to use it.

3 --- Indicates that you know of the topic and do not want to use it.

4 --- Indicates that you are not knowledgeable of the topic.

N = 52

percentage of time was estimated. This modification will be made in future use of the survey instrument.

The four questions, previously stated, to be answered were:

1. To what extent do inservice teachers implement research-based instructional strategies?

2. Which strategies do inservice teachers use most often?
3. To what extent do preservice teachers plan to implement research-based instructional strategies into their own classrooms?

4. Which strategies do preservice teachers plan to use most often?

Based on what 52 preservice teachers indicated they observed in 104 secondary public school classrooms the first question, "To what extent do inservice teachers implement research-based strategies?" cannot be definitively answered. The data collected shows great differences depending on the strategy. A high level of agreement was demonstrated for questioning techniques with 90% of preservice teachers indicating they observed that strategy, but a low of 29% for use of rubrics and portfolios indicates that over 70% of inservice teachers were not observed using these strategies. Only 3 of the 10 strategies (questioning techniques, cooperative learning and skill/direct instruction) were observed in more than half of the classrooms.

This survey indicated only what occurred in a window of time in each classroom. There are more instructional strategies than the 10 emphasized in this particular course, and if a preservice teacher were to ask about specific strategies the inservice teacher may use a different vocabulary that the preservice teacher may not recognize as being the same or similar to a strategy they know. It cannot be assumed that these percentages reflect the whole picture of inservice teacher directed activities. Preservice teachers were not there everyday all day. More research needs to be done to answer the question of inservice teachers implementing research-based strategies.

The second question "Which strategies do inservice teachers use most often?" is summarized by identifying the three strategies most often observed by the preservice teachers. The three in order are:

1. Questioning Techniques *(90% and 90%)

2. Cooperative Learning *(63% and 71%)

3. Skill Lessons/Direct Instruction *(58% and 60%)

*First number indicates results of Initial Field Experience Assignment and second number indicates results of Second Field Experience Assignment.

The surprise is that Cooperative Learning came in higher than Skill Lesson/Direct Instruction. The Texas Teacher Appraisal System is centered around the framework of Direct Instruction. Every teacher is evaluated using that model. Perhaps because this was over an entire semester versus two or three observations it is reassuring that inservice teachers are not limiting themselves to the direct instruction model.

Also, questioning techniques and skill lessons have been standard teaching strategies and not considered "new" in terms of research-based strategies. Preservice teachers are likely to easily identify teachers asking questions of students but may not be able to distinguish some of the research-based techniques, that is, wait-time, wait-time two, prompts, probes, cues, or controlling call-outs. Skill lessons are often anchored with worksheets to "practice" the new skill. Again, this would be easy for the inservice teacher to observe on a fairly regular basis.

The research on cooperative learning has been so well established that the vast majority of inservice teachers have been introduced to this strategy through district sponsored workshops. In relationship to rubrics and portfolios, which reportedly were observed the least, cooperative learning is a much more familiar topic. In summary, the strategies that inservice teachers use most often, based on the 10 strategies surveyed, are questioning techniques, cooperative learning, and skill lessons/direct instruction.
The third question was "To what extent do preservice teachers plan to implement research-based instructional strategies into their own classrooms?" The response was very positive. Preservice teachers indicated that where they observed one-third to one-half of inservice teachers using the strategies they plan to implement the strategies 60% to 100% of the time in their own classrooms. By experiencing the lesson in the university classroom from the perspective of a student, designing a specific lesson around the preservice teacher’s own content area, delivering the lesson to public school students with the approval and input of their mentor teacher, and experiencing a level of success increases the likelihood of future use of the strategy.

The third question can be answered positively. Specific results are summarized with the percentage of students indicating their intent to use the strategy in their own classrooms as follows:

Preservice Teachers’ Intent to Use

1. Questioning Techniques: 100%
2. Concept Attainment: 73%
3. Classification: 60%
4. Thematic/Integrated: 71%
5. Skill Lesson/Direct Instruction: 81%
6. Cooperative Learning: 92%
7. Performance Assessment: 79%
8. Portfolios: 69%
9. Rubrics: 69%
10. Lrng. Styles/Multiple Intelligences: 77%

The fourth question to be addressed was "Which strategies do preservice teachers plan to use most often?" The three strategies rated highest by preservice teachers were:

1. Questioning Techniques (100%)
2. Cooperative Learning (92%)
3. Skill Lessons/Direct Instruction (81%)

These are the same strategies that they reported as being used most often by inservice teachers. This raises more questions. Do inservice teachers or professors have the most influence on preservice teachers? Would the results be the same for a "traditional" preservice teacher education program versus the "field-based" program?

The response of preservice teachers exactly matching the inservice teachers’ use of strategies emphasizes the influence of the relationship established between the inservice teacher and the preservice teacher. No professor has 60 hours of one-to-one time with each student in a single semester. This also emphasizes the importance of a collegial working relationship between public school teachers and university professors.
Issues to Consider for Future Study

- Address the question: Do inservice teachers or university professors have the most influence on preservice teachers? Would the results be the same for "traditional" student teachers as for "field-based" preservice teachers? Do preservice teachers imitate what they observe in inservice teachers classrooms?
- Why aren’t the strategies observed more often in the public school classrooms? Are the teachers closest to retirement assigned university students? Did the inservice teachers come through teacher preparation programs before research-based strategies were emphasized?
- When inservice teachers participate in professional development activities focused on research-based instructional strategies, what kind on monitoring or follow-up occur at the building level?
- Add additional strategies to the survey, for example lecture or use of graphic organizers did not appear on the list. This may assist in answering question number one: To what extent do inservice teachers implement research-based strategies?
- Ask inservice teachers to complete the survey about their own use and what strategies they have observed the preservice teachers using. Compare and contrast results.
- Ask preservice teachers to respond yes or no as to whether they observed the strategy in the inservice teachers classroom and not try to estimate the percentage of time it was observed. (This modification was implemented in order to tally results in this study.)
- Survey preservice teachers after they have been hired and in the classroom for several years to determine their level of use.
- Review the course syllabus, text, and tests to emphasize the research base of strategies taught.
- Redesign how I teach several of the strategies, that is, classification and the integrated/ thematic lesson. Preservice teachers experienced a high level of frustration with the classification lesson. Next time I will introduce the concrete applications of discrete, hierarchical, and overlapping classification one week and build on it the next week with abstract experiences and examples. Introducing both concrete and abstract approaches in the same session was difficult for students to manage. The thematic lesson comes near the end of the semester and preservice teachers are rushed to complete an assignment which requires coordinating with at least three other classmates. It will come nearer the middle of the semester in the next course.

Summary

The purpose of this exploratory study was to gather information from preservice teachers about what they observed in inservice teachers’ classrooms specifically looking at research-based instructional strategies. Preservice teachers practiced the strategies as participants with the professor in their instructional strategies course, designed, and developed lessons for each strategy focused on their own content area, and delivered the lessons to students in the public school setting under the direction of assigned inservice teachers.

A survey was piloted to gather data from 52 preservice teachers about what research-based strategies they observed in 104 secondary inservice teachers’ classrooms within an urban setting. Results indicated that the level of implementation varies greatly within the inservice teachers group but that the preservice teachers plan a much high level of implementation. The four questions to be answered by the study were:

1. To what extent do inservice teachers implement research-based instructional strategies?
2. Which strategies do inservice teachers use most often?
3. To what extent do preservice teachers plan to implement research-based instructional strategies into their own classrooms?
4. Which strategies do preservice teachers plan to use most often?
Based on what 52 preservice teachers indicated they observed in 104 secondary public school classrooms, the first question, "To what extent do inservice teachers implement research-based strategies?" cannot be definitively answered. The data collected showed great differences depending on the strategy. A high level of agreement was demonstrated for questioning techniques with 90% of preservice teachers indicating they observed that strategy, but a low of 29% for use of rubrics and portfolios indicated that over 70% of inservice teachers were not observed using portfolios or rubrics. Only 3 of the 10 strategies (questioning techniques, cooperative learning, and skill lesson/mastery learning) were observed in more than half of the classrooms.

The second question, "Which strategies do inservice teachers use most often?" based on survey results, can be answered. The strategies most often observed used by inservice teachers are questioning techniques, cooperative learning, and skill lessons/direct instruction.

The third question, "To what extent do preservice teachers plan to implement research-based instructional strategies into their own classrooms?" can be answered positively. Specific results are summarized here with the percentage of students indicating their intent to use the strategy in their own classrooms: Questioning Techniques: 100%, Concept Attainment: 73%, Classification: 60% Thematic/Integrated: 71%, Skill Lesson/Direct Instruction: 81%, Cooperative Learning: 92%, Performance Assessment: 79%, Portfolios: 69%, Rubrics: 69%, Learning Styles/Multiple Intelligences: 77%.

The fourth question to be answered was "Which strategies do preservice teachers plan to use most often?" The three strategies rated highest by preservice teachers were:

1. Questioning Techniques (100%)
2. Cooperative Learning (92%)
3. Skill Lessons/Direct Instruction (81%)

Of the 10 strategies surveyed the same three were rated as most often observed in the inservice classrooms and most often planned to be used by preservice teachers.

It is encouraging that preservice teachers intend to implement research-based strategies in their classrooms at such a high level. Only through thorough training and a high level of accountability will preservice teachers be prepared to utilize the variety of instructional strategies available to better meet the needs of the diverse learners in our schools today. Research-based strategies increase student achievement, promote improved self-esteem, assist in constructing meaning, and increase critical thinking. The true measure of the effectiveness of preservice teacher preparation with research-based strategies is in the actual level of implementation they choose to use in their own classrooms one hired into full-time positions. More research needs to occur in this area.

References

Appendix A

Strategies Defined

1. Questioning Techniques

Questioning frequency, equitable distribution, prompting, repetition questions, wait-time, higher-level versus lower-level questions, implications of Bloom’s Taxonomy, call-outs, and choral responding were all part of the university training received.

2. Concept Attainment

In class both deductive and inductive approaches are introduced and practiced. University students may design either type of lesson to fulfill the class requirement but it must include a minimum of 15 examples, 15 non-examples, identify essential attributes and variable attributes of the concept being taught, and include a list of the questions to be asked to "unpack the thinking" of students after the concept is known.

3. Classification

Discrete, hierarchical, and overlapping types of classification are practiced in class. Practice includes concrete and abstract experiences. Application to their own content areas is expected by students. Examples are given in class.

4. Thematic/Integrated

Students are grouped into clusters of four to plan this unit. Assignments are made based on trying to create as much diversity as possible with their content areas. Each student writes a lesson plan related to the general topic their group has selected. A planning web is attached indicating activities for each of their content areas as well as a culminating activity.

5. Skill Lesson/Direct Instruction

These teacher-centered approaches, generally called direct instruction, assign a central role to the teacher in explaining, modeling, and providing opportunities for practice and feedback. (Weinert & Helmke, 1995). Components of the Skills Model include introduction, explanation, teacher-directed practice, independent practice, and extended practice.

6. Cooperative Learning

The Johnson and Johnson model of cooperative teaming is emphasized in this course. Lessons designed by the students must include definitions of the five elements of cooperative teaming as well as explanations of how they will incorporate these elements into their lessons. The five elements are: positive interdependence (creating a feeling that we "sink-or-swim together"), face-to-face interaction, individual accountability,
interpersonal skills (social skills), and processing (discussing what went well, what we can do better next time).

7. Performance Assessment

Performance assessment, alternative assessment and authentic assessment can be defined as evaluating by asking for the behavior you want to produce or a clear understanding of purpose. Students experience this through a variety of activities that require them working in small groups to analyze information, draw conclusions, and compare and contrast a historical situation with a modern day circumstance. Students are scored by predetermined elements.

8. Portfolios

A portfolio is a collection of student’s work that exhibits his/her efforts, progress, and achievements in many areas. Portfolios are a type of performance assessment that permit instruction and assessment to be woven together.

9. Rubrics

Students experience a variety of rubrics throughout the course. They then learn to develop their own for assignments, tests, and presentations. Learning objectives are clearer when preservice teachers develop rubrics before lessons are taught.

10. Learning Styles/Multiple Intelligences

Learning styles are the "preferred ways that different individuals have for processing and organizing information and for responding to environmental stimuli" (Schuell, 1981, p. 46). The work of Dunn and Dunn is reviewed as part of the course. Gardner’s Multiple Intelligences are discussed and experienced with the focus on the question "How are you smart?" not "Are you smart?"

Appendix B
Education 4342
Applications of Instruction in the Secondary Classroom

I. Name: Content Area(s):

Initial Field Experience Assignment:

Second Field Experience Assignment(s):

In an effort to better assess the content of this course, I would appreciate your input. To aid in planning, I have developed an instrument to elicit responses to specific topics.
For your ease of response, circle the number which is coded for each area. Each rating scale is described below.

YOUR USE

1---Indicates that you already know the topic and are or have used it.

2---Indicates that you already know of the topic and want to use it.

3---Indicates that you know of the topic and do not want to use it.

4---Indicates that you are not knowledgeable of the topic.

YOUR INITIAL FIELD EXPERIENCE

Circle yes if the strategy was observed by you of your supervising teacher in the initial field experience assignment and no if not observed.

YOUR SECOND FIELD EXPERIENCE

Circle yes if the strategy was observed by you of your supervising teacher in the initial field experience assignment and no if not observed.

YOUR INTENT

Circle yes if you want to implement the strategy within your own classroom once you are hired full time or no if you do not plan to implement the strategy.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Your Use</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Questioning Techniques</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Concept Attainment</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Classification</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Thematic or Integrated Instruction</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Cooperative Learning</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Skill Lessons / Mastery Learning</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Performance Assessment</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Portfolios</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Rubrics</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Learning Styles / Multiple Intelligences</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Totals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intent to Use</td>
<td>yes/no</td>
<td>yes/no</td>
<td>yes/no</td>
<td>yes/no</td>
</tr>
</tbody>
</table>

Appendix B (Con't)

III. Please comment on what you learned from your initial field experience assignment(s).
IV. Comment on what you learned in your second field experience assignment(s).
V. Other comments: