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ABSTRACT 

 

This paper presents a quantum model for collisions between Neon and Helium atoms 

with the formation of a HeNe quasi-molecule.  The goal is to identify in this quasi-

molecule the basic characteristics of a stable molecule.  Using a Morse potential 

model, we identify modes of vibration within the 2p8 and 2p6 electronic potential wells 

created by overlapping a long-range electrostatic attractive potential with a short-

range Pauli repulsive potential between He(1s
2
) and Ne

*
(2p

5
3p) atoms.  The 

electrostatic interaction is described with a model potential which has been 

successfully tested in various experiments.  The adiabatic molecular potentials of the 

HeNe system are eigenvalues of a Schrödinger equation for this model potential.  For 

experimental testing of our results, a set of vibrational-electronic transitions between 

the 2p8 and 2p6 molecular states is suggested.  Also, we predict the abundance of 

Ne
*
(2p6) atoms after collisions with He(1s

2
) atoms and the absorption of infrared 

photons by Ne
*
( 82p ) atoms.   
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Motivation and goals 

 

Two rare gas atoms in the ground state cannot form a chemical bond because the 

last electronic subshell of each atom is fully occupied with electrons (e.g. Helium atom has 

2 electrons in the 1s subshell, Neon atom has 6 electrons on the last subshell, 2p, etc.).  The 

Pauli principle forbids the formation of a chemical bond in this case.  However, during a 

collision between two rare gas atoms in which at least one atom is excited, molecular 

interactions between atoms are identified [1, 2].  In this paper we investigate the temporary 

HeNe molecular structure formed during a thermal collision between a Helium-ground 

state and a Ne
*
(2p

5
3p) atom at energies between 0.01 and 1 eV.  The time of collision, 

which in this case is about 10
-12
 seconds, represents the lifetime of a HeNe quasi-molecule.  

During this short time, the atoms interact due to electrostatic forces, the spin and the orbital 

motions of the electrons, and the rotation of the internuclear axis.  

Previous studies (see references [1,2]) show that during a collision between a Neon 

atom excited on the 2p
5
3p configuration and a Helium-ground state atom, the 3p-electron 

of Ne
*
(2p

5
3p) changes its energy level within this configuration.  Various electronic 

transitions at small internuclear distances were measured in accurate atomic crossed-beam 

experiments [3] and in atomic discharge cells [4,5].  A theoretical model based on the 

model potential for the HeNe quasi-molecule was proposed initially by Hennecart and 

Masnou-Seeuws [1], and later, it was improved by Bahrim et al. [2].  This model was 

successful in explaining various experiments [2-5].  Recently, the model potential from 

reference [2] was tested in a state-of-the-art spectroscopic experiment of disalignment of 

Ne
*
(2p2) and Ne

*
(2p7) atoms induced by collisions with He(1s

2
) atoms performed at 

University of Kyoto [6]. 

 However, to the best of our knowledge, a temporary HeNe molecule (or quasi-

molecule) has never been directly observed.  This paper proposes an infrared laser 

spectroscopy method for the identification of vibrational modes formed within a temporary 

HeNe molecule as a convincing test that such a molecule forms during a He-Ne collision.   

 

Figure 1:  Selected adiabatic electronic molecular states of a HeNe quasi-molecule.  

A transition between different states of vibration induced by absorption of  

a short laser pulse is suggested.  The avoided crossing regions correspond  

to the strongest electrostatic interaction between the Ne and He atoms. 

 

 

 LASER 
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Figure 1 shows a possible transition between electronic-vibrational (molecular) 

states (which we plan to identify) of a HeNe quasi-molecule induced by absorption of a 

laser pulse.  The new generation of lasers with duration of a few picoseconds or shorter 

could eventually modify the modes (states) of vibration of a HeNe molecular structure.  

This quasi-molecule has actually one period of vibration, which corresponds to the 

collision itself, contrary to a typical stable molecule, which has an infinite number of 

vibrations.  This study will suggest the characteristics of the laser (i.e. the frequency) 

needed to identify a HeNe quasi-molecule.   

This is a senior undergraduate research project in the field of atomic collisions and 

interactions led by the McNair Program at Lamar University.  Besides its scientific value, 

the paper has also a pedagogic value.  It is instructive for a senior undergraduate student 

with interest in the field of quantum mechanics and its applications to use concepts learned 

in advanced physics courses and discover new phenomena that revise our understanding of 

fundamental interactions in physics and chemistry. 

The paper is organized as follows: section 2 presents the quantum model adopted to 

analyze a collision between two atoms.  Section 3 discusses the model potential used for 

the interaction between He(1s
2
) and Ne

*
(2p

5
3p) atoms and shows a few selected adiabatic 

molecular states of the HeNe quasi-molecule.  Section 4 presents our theoretical model for 

finding modes of vibration within a HeNe quasi-molecule and reports the results for the 

2p8 and 2p6 states.  Section 5 presents a set of vibrational-electronic transitions between 

different vibrational modes, while section 6 proposes a recipe for experimental testing of 

our results using a spectroscopic method.  The conclusions follow in section 7. 

 

 

 

Dynamics of the Ne*(2p
5
 3p) + He collision 

 

 

 This section presents the basic model for the description of a collision between two 

atoms according to references [7,8].  The classical Hamiltonian for a collision between 

atoms of masses m1 and m2 interacting through a time-independent potential )( 21 RR
vv

−V  is 

 

 )(
22

)( 21

2

2

2

1

2

1
21 RR

m

P

m

P
RRtotal

vv
vv

vv
−++=− VH . (1) 

The vectors 21 and PP
vv
 represent the linear momenta of the atoms, while 21 and RR

rr
 are the 

coordinates for m1 and m2 in a laboratory fixed (LF) frame.  If in equation (1) we introduce 

the vectors ( ) ( )212211 mmRmRmRCM ++=
vvv

 (“the vector position of the center-of-mass 

(CM)”) and 21 RRR
vvv

−=  (“the relative vector position” of the atoms) two other linear 

momenta are found: (i) 21 PPPCM
vvv

+= , which represents the linear momentum of CM, and 

(ii) ( ) ( )212112 mmPmPmP +−=
vvv

, which is the linear momentum of the reduced particle 

( ) ( )2121 mmmm +=µ ).  We understand by CM a particle of mass 21 mmM += .  Thus, in 

equation (1) the kinetic terms are  
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and consequently, the total classical Hamiltonian (1) becomes 

 ),(
22

),(
22

CM

CM

CMtotal RR
P

M

P
RR

vv
vv

vv
VH ++=

µ
. (3) 

If we choose a coordinate system with the origin in CM, then the term 
M

PCM

2

2
v

 disappears 

from equation (3) and ),( CMtotal RR
vv

H becomes 

 )(
2

)(
2

R
P

Rtotal

v
v

v
VH +=

µ
. (4) 

Here, P
v
 is the total linear momentum of the particle µ  with respect to CM.  The 

transformation from the LF frame to the CM frame is shown in figure 2. The central 

potential )(R
v

V  which describes the electronic interaction between atoms is discussed in 

section 3 for the particular case of the He(1s
2
)-Ne*(2p

5
3p) system. 

 

 
Figure 2:   The transformation from the LF frame to the CM frame. The range of the 

central potential )(R
v

V  from equation (4) is suggested by a dashed circle.  

 

 

 

A model potential for the He(1s
2
)-Ne

*
(2p

5
3p) interaction 

 

 

A complete description of the interaction between Helium and Neon atoms requires 

a Hamiltonian that includes both the electrostatic interaction and the relativistic interaction 

due to the orbital and spin motions of the electrons.  We adopt the model potential from 

references [1,2] indicated in figure 3, in which a complex multi-body interaction between 

Ne
*
(2p

5
3p) atom with the He-ground state atom is simplified into three two-body Coulomb 

interactions: (i) e
-
(3p) + Ne

+
(2p

5
) (for an isolated Ne atom, described by the atomic 

Hamiltonian, )(rH
v
), (ii) e

-
(3p) + He atom (described by a potential )(int RV ), and (iii) the 

core-core interaction (described by a potential )(RWCC ). 

 

 

LF frame 

Ne
* 

He
 

CM frame 

CM 
. 

µµµµ 
P1 P2 

P 
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Figure 3:   A model potential for the interaction between Ne

*
(2p

5
3p) and He(1s

2
) atoms. 

 

The total electronic Hamiltonian of the He-Ne system is 

 

 )()()(),( int RWRVrHrRH CC++=
vv

. (5) 

For thermal collisions as those studied in references [2-6] the spin-orbit interaction 

should be included in ),( rRH
v
.  But only the Ne

*
(2p

5
3p) atom contributes to the electronic 

angular momentum SLJ
vvv

+=  of the HeNe system because He(1s
2
) has 0=J

v
. The 

operators 2J
v

 and its projection, zJ , along the internuclear axis R
r
 commute with the 

Coulomb part of ),( rRH
v
.   

Also, for thermal collisions the electrons follow adiabatically the motion of the 

nuclei. Therefore, the electronic motion can be treated separately, and the Born-

Oppenheimer approximation [8] can be used.  Because the interaction )(R
v

V  in equation (4) 

is time-independent, the electronic potentials (labeled by )(RE ) of the Ne
*
(2p

5
3p)-He 

quasi-molecule are solutions of a time-independent Schrödinger equation 

 

 ),()(),(),( rRRErRrRH
vvv ψψ = , (6) 

in an adiabatic basis set of functions, )(Rψ .  Because the operators 2J
v
 and zJ  commute 

with ),( rRH
v
, the electronic molecular states will be characterized by three quantum 

numbers: the electronic angular quantum number J, the quantum number Ω  associated to 

the projection of the electronic angular momentum on the internuclear axis, and the parity
1
 

quantum number, π  (which can be either +1 or -1).  Therefore, the electronic molecular 

states will be labeled by ( )πΩ)(2 Jpi .  Figure 4 shows the adiabatic molecular potentials 

)(RE  that converge asymptotically toward the )2(2 6 =Jp  and )2(2 8 =Jp  atomic states 

of the Ne
*
(2p

5
3p) configuration, which are of interest for the present study.  During the 

interaction between He and Ne atoms, each atomic state is transformed into three 

molecular channels with Ω = 0
+
, 1 and 2.  The Ne

*
(2p

5
3p)-He quasi-molecule has a total of 

36 adiabatic electronic molecular states, which will be reported elsewhere.  Figure 4 shows 

that all molecular states ( )Ω= )2(2 6 Jp  and ( )Ω= )2(2 8 Jp  have a bonding character at 

small R.  Bonding states are characteristics for stable molecules, only.  This interesting 

result has encouraged us to try finding vibrational states in these potential wells, because a  

                                                 
1
 The parity corresponds to a geometric operation called “inversion with respect to CM” applied to molecular 

states. π is given by (-1)J , for Ω = 0 states.  The Ω ≠ 0 states are degenerate with respect to π (which means 

they have the same energy for both π = +1 and –1 states). 
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mode of vibration is the clear signature for the formation of a molecule.  To achieve this 

goal we develop the model discussed in the next section. 

 
Figure 4:   Electronic (adiabatic) molecular potentials which asymptotically converge 

toward the Ne
*
( 62p ) and Ne

*
( 82p ) atomic states of the 2p

5
3p configuration. 

 

 

 

Theoretical model 

 

 

 

This section presents the quantum model we have developed for the identification 

of vibrational modes in a He-Ne
*
(2p

5
3p) quasi-molecule.  We start by fitting the bottom 

region of each potential well with a simple parabolic function  

 

 ( ) 2

2
1 kxxU =   (7) 

where k  represents the elastic constant for a harmonic oscillatory motion, symmetric with 

respect to an origin x = 0.  The value for k is specific for each potential well.   The 

oscillatory motion within a potential well is actually done about an equilibrium position, 

0R .  If we let 0R  be the internuclear distance at the bottom of the well, and let minE  be the 

potential at distance 0R , then in the parabolic approximation 2

2
1 kxU = , the terms U and x 

mean: minEEU −=  and 0RRx −= .  According to reference [9], we can describe a 

parabolic oscillatory motion with the following Schrödinger equation:  

 

 
( ) ( ) ( )xExkx

x

x
NNN

N ψψ
ψ

µ
=+− 2

2

22

2

1

d

d

2

h
, (8) 

 

where π2h=h  is Planck’s constant.  The general solution to equation (8), which is 

actually the eigenfunction for a parabolic potential ( )xU , is 
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 ( ) ( ) ( )2)(exp 2xxHax NNN γγψ −= , (9) 

where 
2
1

!2 

















=
N

a
NN

π

γ
 is a constant, ( ) ( ) ( )22 )(exp

d

d
)(exp)1( x

z
xxH

N

N
N

N γγγ −=  are 

Hermite’s Polynomials [10], and N is a non-negative integer (0, 1, 2,…) called the 

vibrational quantum number.  The factor γ  is defined as 2

1

4

1

)( hµγ k= .  The eigenvalues, 

NE , in equation (8) represent the vibrational energy levels for a parabolic potential ( )xU .  

With respect to minE , these energies are 

 

 )(
2

1
0min +=− NEEN ωh , (10) 

where µω k=0  is the angular frequency of a harmonic oscillator.  From equation (10), 

the energy difference between consecutive vibrational levels is 

 

 01 ωh=−+ NN EE , (11) 

where 0ωh  is called the “vibrational photon”.  Using equation (11), for each molecular 

state, E(R) (given by equation (6)), we can build up an energy diagram associated to a 

HeNe molecule that has a harmonic oscillation for the nuclear motion.   

 However, a perfectly symmetric oscillatory motion is an ideal case.  In reality, for 

any molecule there is an additional anharmonic effect due to a centrifugal distortion toward 

large internuclear distances that is caused by the rotational motion of the internuclear axis.   

As a result, the vibrational states of any molecule are not equally spaced as indicated by 

equation (11), and therefore, a more accurate model is necessary.  A model that better 

describes the electronic molecular potentials uses a Morse potential,  

 

  ]e2[)(
)()(2 00 RRRR

e eDRV
−−−− −= αα

 .  (12) 

 

In equation (12), eD  is the dissociation energy of the potential well, and α  is an adjustable 

parameter.  The Morse potential model gives a potential well that is steeper at small 

internuclear distances than the parabolic potential.  At large internuclear distances, a Morse 

potential better reproduces the Coulomb attraction between electrons and nuclei.  If we 

expand )(RV  into a Taylor series relative to the variable 0RR − , we get 

 

  ])(1[)( 2

0

2
K+−+−= RRDRV e α .  (13) 

In the first order approximation, we identify the function 2

0

2 )()( RRDDRV ee −=+ α .  If 

we compare this function with the parabolic function, 2

02
1 )( RRkU −= , we get  

 

 kDe 2
12 =α . (14) 
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Solving the Schrödinger equation 

  
( ) ( ) ( ) ( )RERRV

x

R
NNN

N ψψ
ψ

µ
=+−

2

22

d

d

2

h
 (15) 

leads to a series of vibrational states for the Morse potential (12), 

 

  ])()[( 2

2
1

2
1

0min +−+=− NNEEN βωh ,  (16) 

where β  is a constant of anharmonicity and is given in reference [8]  

 

 eD40ωβ h= . (17) 

Equation (16) is written with respect to minE .  Compared with the eigenvalues given in 

equation (11) for a parabolic potential, the equation (16) includes the contribution of the 

anharmonic oscillatory motion of nuclei.  Also, the wavefunctions given in equation (9) for 

a simple harmonic potential should now be modified in order to include the anharmonic 

correction.  Hereafter, each vibrational molecular state will be labeled by ( )NJpi
πΩ)(2  

because in addition to the quantum numbers for the electronic motion (J, Ω and π), we 
have to introduce a new quantum number, N, for the vibrational motion of nuclei. 

 

Procedure to calculate the modes of vibration 

 

In the following, we present the procedure developed to find vibrational states.  Our 

model uses a best fitting procedure of the electronic potential wells )(RE  (shown in figure 

5) with an adjusted parabolic function (7) in the first order and a Morse potential (12) in 

the second order. 

 

(1) First, we look for a parabolic approximation (PA) that best fits the potential well of 

a ( )πΩ)(2 Jpi  electronic molecular state near 0R . 

 

(2) Next, we calculate the elastic constant ( ) ( )20min2 RREEk −−=  and the angular 

frequency µω k=0  for a harmonic oscillatory motion, which leads to the energy 

of the vibrational photon, 10 −−= NN EEωh , associated to a ( )πΩ)(2 Jpi  state. 

 

(3) We calculate the vibrational ground state min02

1
0 EEN +== ωh  of the ( )πΩ)(2 Jpi  

state.  If min0 EEN −=  is larger than the width of the region where a parabolic 

function fits a ( )πΩ)(2 Jpi  state then an adjusted parabolic approximation (APA) is 

applied to get 0=′NE  and R′  so that 2

02
1 )( RRkU −′=  is set to PN EE ωh

2
1

min0 =−′ = . 
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This adjustment shifts the vibrational ground state downward by 00 == ′−= NN EEEδ , as 

indicated in figure 5 for the test case ( )2)2(2 8 =Ω=Jp .   For upper vibrational states, 

with N = 1, 2, 3,…, the energy shift Eδ  should be multiplied by (2N + 1): 

 

 ( ) ENN δδ 12 += . (18) 

 

Figure 5:  The vibrational ground state of the ( )2)2(2 8 =Ω=Jp  electronic molecular 

potential.  The parabolic and adjusted parabolic approximations are indicated. 

 

(4) We read the dissociation energy, eD , from equation (13), for a Morse potential that 

best fits the potential well and calculate the parameter eP Dk 2=α .   The value 

for eD  and Pα  are adjusted until the Morse potential best fits a broader region of 

the potential well.   We label the adjusted parameter by Mα . 

 

(5) Next, we calculate a new elastic constant, 22 MeM Dk α= , and the energy of the 

vibrational photon µω MM khh =  for a Morse potential. The anharmonicity 

factor from equation (17) can now be calculated using formula: eM D4ωβ h= . 

 

(6) Finally, we calculate the vibrational states M

NE  according to equation (16). 
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Table 1 gives the relevant parameters discussed above for the vibrational ground 

state of ( )2)2(2 6 =Ω=Jp  and ( )2)2(2 8 =Ω=Jp  molecular channels.  On the first two 

lines we give the parameters that lead to P

NE 0=  in the parabolic approximation, while on the 

last two lines we give the parameters used for M

NE 0=  in the Morse model.  For the 2p6 state 

a parabolic approximation is applied (therefore, there is no energy shift δE), while for the 
2p8 state an adjusted parabolic approximation is required, as shown in figure 5.     

 

Table 1:   The relevant parameters for the vibrational ground state (N = 0) of the 

( )2)2(2 6 =Ω=Jp  and ( )2)2(2 8 =Ω=Jp  molecular channels.  The percentage shift 

Γ from equation (19) is indicated. 

State R0(a0) Emin(cm
-1
) k kP (APA) 

ωωωωP 
(10

13
rad/s) 

P

N
E 0====  

(cm
-1
) 

δδδδE 
(cm

-1
) 

2p6 4.233 150319 350 ---- 2.12 150375.16 0 

2p8 4.257 149552 800 727.162 3.05 149632.95 4.0 

State ααααP De (cm
-1
) ααααM kM ββββ 

M

N
E 0====  

(cm
-1
) 

ΓΓΓΓ (%) 

2p6 0.507 681 0.60 490.32 0.0488 150383.85 15.5 

2p8 0.816 546 0.85 788.97 0.0772 149633.22 0.3 

 

The percentage shift in energy between the ground states calculated with a Morse 

potential, M

NE 0= , and calculated with a simple parabolic approximation, P

NE 0=  , is defined as 

 

 ( ) ( )( ) %100% min000 ⋅−−=Γ === EEEE P

N

P

N

M

N . (19) 

This percentage shift is indicative for the precision attained in our calculations and is given 

in table 1 for both ( )2)2(2 6 =Ω=Jp  and ( )2)2(2 8 =Ω=Jp  molecular channels.  Values 

of 0.3% and 15.5% respectively, are small enough to make us confident regarding the 

procedure described above for the calculation of the energy diagram for the vibrational 

motion within a πΩ)(2 Jpi  molecular channel. 

 

 

 

Results for the (2p6 (J=2) ΩΩΩΩ=2) and (2p8 (J=2) ΩΩΩΩ=2) states  

 

 

Table 2 gives the vibrational energy levels for the ( )2)2(2 6 =Ω=Jp  and 

( )2)2(2 8 =Ω=Jp  molecular channels.  Figure 6 shows the energy diagram and the wave 

functions (9) for the nuclear motion within a HeNe quasi-molecule, corrected by the 

anharmonicity factor (17).  A wave function associated to the nuclear motion allows “to 

visualize” the nuclei during a collision as quantum particles.  Quantum physics considers  
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that any particle in motion has a wave behavior.  Also, for each vibrational energy level in 

table 2 we give the absolute uncertainty, ∆N, defined as 
 

  P

N

M

NNN EE −+=∆ δ , (20) 

where δN  was introduced by equation (18).  The quantity ( )PNM

N EE −  represents the energy 

difference between the vibrational energy levels calculated with the (adjusted) parabolic 

approximation and the Morse potential model, respectively.    

  

 

Table 2:  The vibrational energies, EN, calculated with a Morse potential model, for 

two molecular states, the atomic energies piE2  the energy splitting 1, −∆ NNE between 

adjacent vibrational states, the localization of a vibrational state (which is between 

minR  and maxR ), and the absolute uncertainty, ∆N, for each energy EN  are given.  

( )πΩ)(2 Jpi  

molecular states 

E2pi           

(cm
-1
) 

N 
EN 

(cm
-1
) 

1, −∆ NNE  

(cm
-1
) 

minR  

(a0) 
maxR  

(a0) 
N∆ (cm

-1
) 

0 150384 ---- 3.81 4.85 8.7 

1 150504 120 3.65 5.51 16.3 2p6(J=2)2
± 150317 

2 150611 107 3.48 6.72 11.0 

0 149635 ---- 3.81 4.74 4.2 

1 149778 143 3.64 5.36 30.6 2p8(J=2)2
±
 149826 

2 149894 116 3.46 6.00 --- 
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Figure 6:  The energy diagram for the ( )2)2(2 6 =Ω=Jp  (in red) and ( )2)2(2 8 =Ω=Jp  

(in blue) molecular states of a HeNe
*
 quasi-molecule.  The wave functions for 

the nuclear motion (dashed lines), the Morse potentials (dotted dark lines) and 

eD  from equation (12) are indicated. 

 
Compared with a parabolic approximation, which gives vibrational energies evenly 

spaced (i.e. P

N

P

N EE 1−−  = 112 cm
-1
 and 162 cm

-1
 for the 2p6 and 2p8 molecular channels, 

respectively), the Morse potential model takes care of the anharmonic effect correctly, as 

shown in table 2, where we see that the energy splitting M

N

M

NNN EEE 11, −− −=∆  decreases 

for higher vibrational states. 

 
Transitions between vibrational-electronic molecular states 

 

 

 An upward vibrational-electronic transition takes place when a photon of energy 

NN EEh −= ′ν  (where ν  is the frequency of the photon) equal to the energy difference 

between two ( )NJpi
πΩ)(2  levels is absorbed.  The transition is “allowed” if it obeys 

simultaneously the following four selection rules: (i) it should be vertical at a well-defined 

R (known as “the Franck-Condon principle” [8]), (ii) for nuclear motion 1±=∆N  [11], (iii) 

for electronic motion 1,0 ±=∆J  [8] and 1,0 ±=∆Ω  [11], and (iv) for parity 1±=∆π  [8].  

 Table 3 gives the characteristics of the transitions between vibrational levels of the 

( )2)2(2 6 =Ω=Jp  and ( )2)2(2 8 =Ω=Jp  electronic states presented in figure 7. The 

energy, hv , the wavelength λ , the frequency, v , and the period, ν1=T , of a “transition 

photon” that induces excitation between vibrational-electronic states are given.  In table 3,  
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we also indicate the absolute uncertainty in the energy of a photon NN EEh −= ′ν , which 

is calculated as the sum of uncertainties N∆  (defined in equation (20)) in the energy of the 

vibrational-electronic states involved in a transition NJpi
πΩ)(2  →  '')'(2 ' NJp f

πΩ :     

  NN ′∆+∆=∆ . (21) 

 

Table 3 indicates that an infrared photon should be absorbed between ( )NJpi
πΩ)(2  states. 

 

Table 3:   The characteristics of transitions between vibrational-electronic states.  

The absolute uncertainty, ∆, (from equation (21)) for the photon’s energy hv  and 

the relative uncertainty, ρ, in the energy of the photon are given. 

Transition ∆J ∆Ω N→N' 
hν 

(cm
-1
) 

λ  
(10

-6
 m) 

ν  (10
13
Hz) 

T 

(10
-13
s) 

ρ 
(%) 

0→1 870 ± 20 11.5 ± 0.3 2.60 ± 0.06 0.38± 0.01 2.3 

1→0 610 ± 40 16 ± 1 1.8 ± 0.1 0.55 ± 0.04 6.6 

1→2 830 ± 40  12.0 ± 0.6 2.5 ± 0.1 0.40 ± 0.02 4.8 
2p8 → 2p6 0 0 

2→1 610 ± 20 16.4 ± 0.5 1.83 ± 0.06 0.55 ± 0.02 3.3 

 

Figure 7:  Transitions between vibrational levels of the ( )2)2(2 6 =Ω=Jp  (red line)  

and ( )2)2(2 8 =Ω=Jp  (blue line) molecular states.  The energies relevant  

for the discussions from sections 5 and 6 are indicated graphically. 
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 Once a transition that satisfies the selection rules is identified, we must consider a 

“time of interaction”, t∆ , spent by atoms in a molecular-vibrational region where the 

transition is allowed by the Franck-Condon principle.  If R∆  is the width of this region, 

and υ  is the speed of the reduced mass, µ, with respect to CM (figure 2) then we have 

υRt ∆=∆ .  The speed, υ , is related to the local kinetic energy, K , of the reduced mass 

when a transition occurs by the equation µυ K2= , where  

 

 

  )( 2 Npi EEKK −+= ∞ .   (22) 

 

In formula (22), ∞K  is the asymptotic kinetic energy, and piE2  is the atomic energy of the 

incoming collisional channel, ip2 .  Finally, the time of interaction is  

 

 ( ))(2 2 Npi EEK
Rt

−+
∆=∆

∞

µ
. (23) 

If we set ∞K  ≈ 0 in formula (23) then we find a maximum time of interaction, 0t∆ .  If 

0≈∞K  and Npi EE <2  then the atoms cannot reach the vibrational region where the 

transition occurs, and 0t∆  is undefined.  If we set t∆  = T (the period of a transition photon) 

in equation (23) and solve for ∞K  then the solution  

  piN EE
T

R
E 22

2

limit
2

)(
−+

∆
=
µ

   (24)  

represents the maximum asymptotic kinetic energy at which the transition occurs.  An 

electronic-vibrational transition can occur if t∆  > T.  If we substitute both t∆  (from 

equation (23)) and T (from equation (24) in the inequality Tt <∆ , we get limitEK >∞ .  In 

this case, the collision is too fast and the photon cannot be absorbed.   If Tt <∆ 0  then the 

transition is too fast for any 0>∞K .  

If there is a potential hill, in hillE , in the incoming channel (see figure 7) then 

classically, the HeNe system may not have enough energy to get over this barrier and reach 

the molecular-vibrational region.  In this case, according to the laws of classical physics 

the transition cannot take place.  We say that a transition is classically “forbidden” for 

in hillEK <∞ .  We can define a time in hillt∆  associated to this case which can be calculated 

when in hillEK =∞  in formula (23).  If inhillt∆  < T, the transition is classically “forbidden”. 
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Table 4 gives for the four vibrational transitions from table 3, the times discussed 

above.  The transitions labeled “allowed” correspond to Tt >∆ in hill  (or in hilllimit EE > ), and  

the transitions labeled “forbidden” correspond to Tt <∆ in hill  (or in hilllimit EE < ).  In the 

latter case, the transition can occur only via quantum tunneling in the incoming channel. 

With these results available, the experimentalists have the necessary information to 

identify a temporary HeNe molecule using an infrared laser spectroscopy technique. 

 

 

 

Experimental testing of the population of Ne
*
(2p6) atoms 

 

 

We propose a theoretical model able to predict the population of Neon atoms on the 

2p6 state after collision and stimulated absorption of an infrared photon from the 2p8 state.  

Our model takes into consideration the quantum tunneling effect. 

We take the test transition ( )22)2(2 8 ==Ω= NJp  →  ( )12)2(2 6 ==Ω= NJp , 

because it has a potential hill in the incoming molecular channel (see figure 7).  Figure 8 

shows the relationship between ∞K  (given in units of meV, where 1meV = 8.065 cm
-1
, 

because they are used by experimentalists) and t∆  from equation (23) for this transition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4:  Vibrational-electronic transitions between two molecular states ( ot∆ > T). 

"Allowed” corresponds to Tt >∆ inhill  and "Forbidden" corresponds to Tt <∆ inhill .   

Transition ∆J ∆Ω N→N' 
T            

(10
-13
s) 

0t∆  

(10
-13
s) 

inhillt∆  

(10
-13
s) 

Status 

0→1 0.3838 0.4207 0.3291 Forbidden 

1→0 0.5504 0.9385 0.5001 Forbidden 

1→2 0.4004 1.5522 0.8272 Allowed 
2p8 → 2p6 0 0 

2→1 0.5468 undefined 1.0572 Allowed 
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Figure 8:   The relationship between the energy K∞ and the time of interaction t∆ . 

 

 The energy criterion discussed above leads to the following situations: (a) if K∞ < 

15meV, then the Frank-Condon region of the ( )2)2(2 8 =Ω=Jp  channel can be accessed 

through quantum tunneling only.  Consequently, the probability to excite Ne
*
(2p6) atoms is 

small as shown in figure 9(a), where we label by P2p6 the population of Ne
*
(2p6) atoms 

relative to the initial population of the Ne
*
(2p8) atoms before collision.  (b) If 15meV < K∞ 

< 75.1meV, then the transition is allowed and the entire population of Ne
*
(2p8) atoms is 

transferred on the 2p6 state, as shown in figure 9(b).  In this case the population of the 

Ne*(2p6) atoms is 100%.  (c) If K∞ > 75.1meV, then the collision is too fast and eventually 

no Ne
*
(2p6) atoms will form due to a vibrational-electronic transition as shown in figure  

9(c).  However, if a collision is more energetic than the energy difference between the 

(asymptotic) atomic levels (i.e. 822p6 pEEK −>∞  of 61meV) it is possible to excite the 

Ne
*
(2p6) atoms at large internuclear distances (R > 12ao in figure 4), before the molecular 

interaction between He and Ne atoms starts to play a role.  The green line represents the 

population of Ne
*
(2p6) atoms due to a 2p8 → 2p6 transition at large R and for large K∞. 

The population of the Ne
*
 atoms after collision with He atoms and the absorption 

of an IR photon (figure 9) can be measured in an experiment of atomic spectroscopy of the  

emission lines.  The Ne
*
(2p6) state discussed above is optically connected to the 1s2 and 

1s4 states of the lower Ne
*
(2p

5
3s) configuration.  The intensity of the radiation emitted by 

spontaneous emission from the 2p6 state is proportional with the population of the Ne
*
(2p6) 

atoms.  Therefore, figure 9 implicitly shows the variation of the intensity we expect for a 

transition from the 2p6 state toward a state of the Ne
*
(2p

5
3s) configuration, which could be 

measured in a spectroscopic experiment.   

 

 

 

 

 



JOSEPH HUNT AND CRISTIAN BAHRIM 

____________________________________________________________________________________17 

 

 

 

 

 

 

 

 

 
Figure 9:  Qualitative representation of the population of Ne

*
(2p6) atoms as a function of 

K∞ for the transition ( )22)2(2 8 ==Ω= NJp  →  ( )12)2(2 6 ==Ω= NJp .   

 

 

 

Conclusions 

 
 

In this paper we develop a theoretical model able to predict states of vibration in a 

temporary molecule formed during a collision between two rare gases.  To the best of our  

knowledge this is for the first time when modes of vibration are identified in a temporary 

molecule formed between He and Ne.  Our model uses a parabolic approximation for a 

harmonic oscillatory motion in the first order and a Morse potential in the second order of 

calculations, which includes explicitly the effect of anharmonicity.  In this study we choose 

the He-Ne system because of our success in explaining various atomic effects in He-Ne 

collisions [2-6] based on a reliable potential model [2].  This model can be applied to any 

similar collisions.  We identified several vibrational–electronic transitions between 

molecular channels that can be investigated in spectroscopic measurements using the 

absorption of an infrared laser pulse.  The laws of chemistry simply deny the formation of 

a molecule between two rare gas atoms.  A successful experiment for the identification of  

vibrational states in a temporary HeNe molecule will revise this restrictive point of view.  

In addition, our model predicts the relative population of Ne
*
 atoms after collision, which 

is proportional with the intensity of the radiation released by atoms in spontaneous 

emissions.  The intensity of an emission line is relatively easy to measure.  We hope that 

our study will stimulate interest in the experimental identification of the HeNe molecule. 
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